- Publishing System: TPAS
- Access date: 1/9/2007
- Document ECN's: Latest Available

Schematic/Electrical Parts-

30022 and 36030F8J 42032F7J and 48040F7J/B E-P Plus Controls

Please Read

About the Manual Identifying Information on the Cover

The front cover displays pertinent identifying information for this manual. Most important, are the published manual number (part number) /ECN (date code). Generally, when a replacement manual is furnished, it will have the same published manual number, but the latest available ECN. This provides the user with the latest information applicable to his machine. Similarly all documents comprising the manual will be the latest available as of the date the manual was printed, even though older ECN dates for those documents may be listed in the table of contents.

When communicating with the Milnor factory regarding this manual, please also provide the other identifying information shown on the cover, including the publishing system, access date, and whether the document ECN's are the latest available or exact.

References to Yellow Troubleshooting Pages

This manual may contain references to "yellow pages." Although the pages containing troubleshooting procedures are no longer printed on yellow paper, troubleshooting instructions, if any, will be contained in the easily located "Troubleshooting" chapter or section. See the table of contents.

Trademarks of Pellerin Milnor Corporation

The following, some of which may be used in this manual, are trademarks of Pellerin Milnor Corporation:

CBW $^{\circledR}$	E-P Plus $^{\circledR}$	Mildata $^{\circledR}$	MultiTrac™ $^{\circledR}$
E-P Express $^{\circledR}$	Gear Guardian $^{\circledR}$	Milnet $^{\circledR}$	Staph Guard $^{\circledR}$
E-P OneTouch			

Comments and Suggestions

Help us to improve this manual by sending your comments to:
Pellerin Milnor Corporation
Attn: Technical Publications
P. O. Box 400

Kenner, LA 70063-0400
Fax: (504) 469-1849

Table of Contents for ME7HF8J1BE/2006493N 30022 and 36030F8J 42032F7J and 48040F7J/B E-P Plus Controls

Page	Description	Document/ECN
1	Component Parts List	W7F5JPL2004134N
9	Warranty	BMP720097/92732A
10	How to Order Parts	BMP720097R/72332A
12	How to Use Electrical Schematics	MSFD0106AE/2004414V
22	3 Phase Motor Connection Diagram	BMP850029/99362B
23	3P Motor Diagram-Multivolt	W80008/2001253A
24	Control Box Layouts 30"	W7F5JTG1/2001175B
26	Control Box Layouts 36"+42"	W7F5JTG2/2004193B
28	Control Box Layouts 48040	W7F5JTG3/2004193B
30	Board to Board Wiring	W7F5JBW/2001125B
32	Flushing Supplies \#1 thru \#5	W7F5JCF/2001365B
34	8 Flushing Supplies-Optional	W7F5JCM/2001125B
36	Alternate Drain Valve-Air Operated	W7F5JDR/97107B
38	Electric Valves	W7F5JEV/2004454B
40	Elec. Vlvs.-Bath Soak-Non Air Operated	W7F5JEVS/2004454B
42	Hydraulic Door 48040F7B/J only	W7F5JHD/2002243B
44	Microprocessor Inputs	W7F5JIA/2001365B
46	Control Circuit Transformers	W7F5JLV/2003356B
48	600V Step Down Transformer for Inverter	W7F5JMT6/2003124B
50	Raise House Wiring 48040F7B Only	W7F5JRH/2002243B
52	Start Circuit 30F8J, 36+42V6J	W7F5JS+A/2004454B
54	Start Circuit 30F8J+Bath Soak	W7F5JS+B/2004454B
56	Start Circuit 42F7J	W7F5JS+C/2004454B
58	Start Circuit 42F7J+Bath Soak	W7F5JS+D/2004454B
60	Start Circuit for 48040F7B (tilt)	W7F5JS+E/2006493B
62	Start Circuit for 48040F7J (non tilt)	W7F5JS+F/2004454B
64	Signal Beacon - Optional	W7F5JSB/2000046B
66	Speed Sensing Board	W7F5JSP/2003163B
68	Variable Speed Drive 30F8J	W7F5JVP/2006493B
70	Variable Spd Drive 36+42F7J- GPD505	W7F5JVPB/2006493B
72	Variable Spd Drive 36+42FxJ-Baldor	W7F5JVPC/2001175B
74	Variable Speed Controller for 30022F8J with 515 Inverter	W7F5JVPD/2006493B
76	Variable Speed Inverter for 48040 F	W7F5JVPE/2004134B
78	Variable Speed Controller for 36 \& 42 F\#J-GPD315	W7F5JVPF/2006493B

CONTROL BOX \times
$\stackrel{0}{0}$
$\stackrel{0}{0}$
$\stackrel{y}{0}$

MILNOR P/N

B2TAG97080

08BNCMADA
 08BNCMOAT 08BNCMOT 08BNCMBT 08BN8SAT 08BN6OAT 08BN788AT
BD:8088 PROC 22OUT-16IN-TEST
RELAY-LATCH DPDT 240 V 2-COIL
 RELAY-LATCH DPDT 240 V 2 -COIL
 RELAY 4PDT DIFGLD 14PN 240V RELAY 4PDT DIFGLD 14PN 240V RELAY 4PDT DIFGLD 14PN 240 V

COMPONENT

WHERE TO FIND

 W7F5JTG1 W7F5JTG2 W7F5JTG2 W7F5JTG2 W7F5JTG2 W7F5JTG2 W7F5JTG3 $\stackrel{1}{4}$ W7F5JTG3W7F5JBW 3
1
3
3
3
3 W7F5JBW
 $\stackrel{3}{3}$ W7F5JBW W7F5JBW 3
9
3
3
3
3
W7F5JS+C $\stackrel{+}{\stackrel{1}{4}}$ $\stackrel{山}{\stackrel{1}{4}}$ W7F5JS+F
W7F5JS+B
W7F5JS+E
W7F5JCM
W7F5JCM
W7F5JCM
W7F5JCM
W7F5JCM 09C024D71
09C024D71
09C024D71
09C024D71
09C024D71
09C024D71
09C024D71

COMPONENT
NUMBER 001
002
003
003
004
005
006
007
008
009
010
BA
BAAD
BADV
BAO
BAO
BAS
BAS-0
BAUO-0 LATCH-DOOR SEAL
LATCH-DOOR SEAL LATCH-DOOR SEAL BOARD-ANALOG TO DIGITAL CONV.BD. BOARD-VACUMN FLOR DISPLAY BOARD-OUTPUT 16 CHANNEL BOARD OUTPUT
BOARD-SNUBBER 16 CHANNEL board-snubber 8 CHANNEL BOARD-OPTIONAL 6 OUTPUTS BOARD-MICROPROCESSOR >>>RELAY-LATCH

COMPONENT

FRNT OF MACH

 SWITCH PANEL SWITCH PANEL

 SWITCH PANEL

 BUZZ／230V W／6－32 CTR＋6＂LEADS BUZZ／230V W／6－32 CTR＋6＂LEADS BUZZ／230V W／6－32 CTR＋6＂LEADS FUSE BK／MDX 2 AMP 250V BUSS

 SSก日＾OGZ dWV 乙 XOW／Y日 ヨSกコ

 BEACON ROTARY 5．5＂DIA AMBER LAMP 1／2＂AMB 250V IDI 1051QC3

O

 SOLENOID 240／60－－220／50＝ILOC SOLENOID 240／60－－220／50＝ILOC

09FF002AMG 09FF002AMG 09FF002AMG 09FF002AMG 09FF002AMG 09FF002AMG
 09FF002AMG
 09FF002AWN 2
3
$\frac{3}{2}$
$\stackrel{1}{0}$
$\stackrel{1}{4}$
$\stackrel{1}{\circ}$ 09FF002AWN 09H025V37
09J060A71
09J060A71
09J060A71
09J060A71
09J060A71
09J060A71
09J060A71 09K062B71
09K062B71
96D350A71
96D350A71
FUNCTION OF THIS
WHERE TO FIND
THIS COMPONENT
THIS COMPONENT
W7F5JS＋B
W7F5JS＋C W7F5JS＋D W7F5JS＋E W7F5JS＋F W7F5JS $+A$
W7F5JS $+B$ 0
$\stackrel{+}{3}$
$\stackrel{1}{5}$
3 W7F5JS＋D W7F5JS＋A ∞
$\stackrel{+}{+}$
$\stackrel{1}{4}$
$\stackrel{1}{+}$
$\stackrel{N}{3}$ 0
+
$\stackrel{1}{1}$
$\stackrel{1}{+}$
3 \square
$\stackrel{+}{0}$
$\stackrel{4}{N}$
3 W7F5JLV $\xrightarrow[3]{3}$ $>$
$\stackrel{4}{3}$
$\stackrel{4}{3}$

3 W7F5JSB | 4 |
| :---: |
| |
| |
| 3 |
| 3 | ∞

$\stackrel{+}{+}$
$\stackrel{1}{1}$
$\stackrel{1}{5}$
3 W7F5JS＋C \square
$\stackrel{+}{1}$
$\stackrel{1}{4}$
$\stackrel{1}{2}$
3 $山$
$\stackrel{+}{4}$
$\stackrel{1}{4}$
$\stackrel{1}{4}$
3 4
$\stackrel{+}{4}$
$\stackrel{4}{4}$
$\stackrel{4}{5}$
3 ∞
$\frac{0}{7}$
$\frac{1}{5}$
3
W7F5JS＋A $\stackrel{\infty}{+}$ W7F5JEV
W7F5JEVS

CONTROL BOX
 CONTROL BOX CONTROL BOX

 \times
0
0
0
$\stackrel{1}{c}$
$\stackrel{y}{z}$
0
 MACHINE
CONTROL BOX
CONTROL BOX
CONTROL BOX
CONTROL BOX
CONTROL BOX
CONTROL BOX

\times
0
0

 OL RELAY 1P SZ1 SQD \＃9065－C01 SEE EX37－1，－2，OR－3 FOR VOLTAGE SEE EX37－1，－2，OR－3 FOR VOLTAGE
AUTOXFMR $208 \mathrm{~V}-230 \mathrm{~V} 250 \mathrm{VA}$ AUTOXFMR 208V－230V 250VA XFMR 600VPRI／240VSC－250VA－3\％REG XFMR 200－240PRI／120SEC 250V5／6 SEE SPECIFIC COMPONENT＋NAMEPLATE FAN 92CFM230V60 NEWARK\＃90F6926 RESIST 100 OHM 225WATT ADJ
RESIST 100 OHM 225WATT ADJ
RESIST 100 OHM 225WATT ADJ
VARISPEED－TRANS＋R 5HP 380－460V
VARISPEED 460V 10HP 18A GPD315
VARSPEED 21 AMPS 460V
VARSPEED V MACHINES 5HP 460V
INVERTER 39AMPS 480V F7
VARISPEED－TRANS＋R 5HP 200－230V
VARSPEED 36 AMPS 230V
F7 INVERTER 45 AMP
BALDOR INVERTER 42AMP 230 V
VARSPEED V MACHINES 5HP 230 V

09F024A $\stackrel{4}{~}$
$\stackrel{1}{\square}$
$\stackrel{y}{8}$ 09F024A MESSAGE EW 09UB25AT71 09UA025AAB 09U251AB71 09UA025A37 OS ヨЭVSSヨん 13AF100A71 13AF100A71 13AF100A71 13AF100A71 13AF100A71 13AF100A71 09MV100RES
 09MV100RES 09MV050D96 09MV018F96 09MV021A96 09MV050F96 09MWA03996 09MV050D74 09MV036A74
 09MT042A74 09MV050F74
FUNCTION OF THIS
WHERE TO FIND
THIS COMPONENT
W7F5JBW
W7F5JVP W7F5JVPD W7F5JVPE

W7F5JVPE
W7F5JS＋A
W7F5JS $+B$
W7F5JS $+C$
W7F5JS $+D$
W7F5JS $+E$
W7F5JS $+F$
W7F5JVP W7F5JVPD W7F5JVPE W7F5JVP W7F5JVPB W7F5JVPB $\stackrel{0}{2}$ W7F5JVPE $\stackrel{\substack{0 \\ \stackrel{0}{2} \\ 3 \\ 3}}{n}$ $\stackrel{\infty}{\infty}$ $\stackrel{0}{n}$ $\underset{3}{0}$ W7F5JVPD
COMPONENT
 COMPONENT NUMBER POWER SUPPLY－MICROPROCESSOR OVERLOAD－DYNAMIC BRAKE OVERLOAD－DYNAMIC BRAKE OVERLOAD－DYNAMIC BRAKE TRANSFORMER－INCOMING VOLT．240VAC TRANSFORMER－INCOMING VOLT． 240 VAC
TRANSFORMER－208VAC TO 240 VAC TRANSFORMER－208VAC TO 240VAC
TRANSFORMER－380／480V TO 240 V TRANSFORMER－600V TO 240V TRANSFORMER－240VAC TO 120VAC ＞＞MOTORS
MOTOR－DRIVE
COOLING FAN－INVERTER COOLING FAN－INVERTER
COOLING FAN－INVERTER

 COOLING FAN－INVERTER ＞＞＞MOTOR POWER INVERTERS RESISTOR－DYNAMIC BRAKE RESISTOR－DYNAMIC BRAKE RESISTOR－DYNAMIC BRAKE INVERTER－3022 VARISPEED HIGH VOLT INVERTER－3630 VARISPEED HI VOLT INVERTER－4232 VARISPEED HI VOLT INVERTER－3022 VARISPEED HIGH VOLT INVERTER－4840 VARISPEED HIGH VOLT INVERTER－3022 VARISPEED LOW VOLT INVERTER－3630 VARISPEED LOW VOLT INVERTER－4232 VARISPEED LOW VOLT INVERTER－4232 VARISPEED LOW VOLT INVERTER－3022 VARISPEED LOW VOLT
0
0
0
0
0
 MVDBR MVDBR MVINV－H MVINV－H MVINV－H MVINV－H MVINV－H \sum_{\sum}^{\perp} MVINV－L MVINV－L MVINV－L MVINV－L

CONTROL BOX MOUNT ONMACH
 SWITCH PANEL

 7ヨN甘d HOユMS 7 $\exists \mathrm{N} \forall \mathrm{A}$ HOLIMS | 岂 |
| :--- |
| 0 |
| \sum_{0}^{2} |
| 0 | 7ヨNVd HOLIMS 7ヨN甘d HO』MS 7ヨNVd HOユIMS 7 \exists NVd HOLIMS 7ヨN甘d HOLIMS SWITCH PANEL SWITCH PANEL

岂 7ヨNVd HOЦMS

DESCRIPTION

F7 INVERTER 71AMP
PRXSW QKCO 18M NO－AC SHLD
هาHS כ甘－ON WZL NNOO OO MSXOYd वาHS OV－ON WZL NNOO OO MSXOYd
 PROXSW QD CONN 12M NO－AC SHLD
TOGSW SPDT NO OFF 10A250V SWASS M2W 1NO＋INC
 sWASS PBBK 1NO

 SW ASSY EMER STOP SW ASSY EMER STOP SW ASSY EMER STOP SW ASSY EMER STOP SW ASSY EMER STOP

CAP－PUSHBUTTON BLK \＃CAP16－3PBK SWASS PB YELLOW INO CAP－PUSHBUTTON BLK \＃CAP16－3PBK sWASS PBBK 1 NO
CAP－PUSHBUTTON GRN \＃CAP16－3PGN 0
2
2
Z
0
0
0
2
0
CAP－PUSHBUTTON BLK \＃CAP16－3PBK

 N

\circ
0
0
0
0
0
0

僉 09R002BK | 읓 |
| :--- |
| |
| 2 |
| \sum_{0}^{2} |

 09N405PB10 09N405PG10 늢
 COMPONENT
W7F5JLV
W7F5JDR W7F5JS＋D 4
$\stackrel{4}{4}$
$\stackrel{1}{4}$
$\stackrel{1}{4}$
3

0
$\substack{+1 \\ 1 \\ 5 \\ 3}$

$\stackrel{+}{0}$
$\stackrel{1}{1}$
3
3山
$\stackrel{+}{3}$
$\stackrel{4}{N}$
3 W7F5JS＋F W7F5JS＋C W7F5JS＋D
 $\stackrel{\infty}{\infty}$ 0
0
$\stackrel{1}{4}$
$\stackrel{1}{4}$
3 $\stackrel{\square}{\stackrel{+}{4}}$ W7F5JS＋E W7F5JS＋F W7F5JRH W7F5JIA W7F5JIA W7F5JIA W7F5JIA W7F5JIA W7F5JIA $\stackrel{\nwarrow}{3}$ $\frac{4}{3}$
FUNCTION OF THIS FUNCTION OF THIS
COMPONENT NUMBER
INVERTER－ 4840 VARISPEED LOW VOLT FUNCTION OF THIS
COMPONENT NUMBER
INVERTER－ 4840 VARISPEED LOW VOLT
PROX SW－DOOR FUUL OPEN PROX SW－DOOR FULL OPEN
PROX SW－FRONT DOWN LEFT PROX SW－FRONT DOWN RIGHT PROX SW－REAR DOWN LEFT PROX SW－REAR DOWN RIGHT ＞＞SWITCH－HAND OPERATED
SWITCH－208／240VAC
SWITCH－ALTERNATE DRAIN SWITCH－ALTERNATE DRAIN SWITCH－UNLATCH DOOR
 SWITCH－UNLATCH DOOR SWITCH－UNLATCH DOOR SWITCH－UNLATCH DOOR SWITCH－UNLATCH DOOR SWITCH－UNLATCH DOOR SICH ULATCH DOOR SWITCH－EMERGENCY STOP SWITCH－EMERGENCY STOP SWITCH－EMERGENCY STOP SWITCH－EMERGENCY STOP SWITCH－EMERGENCY STOP SWITCH－EMERGENCY STOP SWITCH－FRONT／REAR SELECTOR SWITCH－NEXT SIGNAL CANCEL30＂ SWITCH－NEXT SIGNAL CANCEL 36＂，42＂，48＂ SWITCH－NEXT SIGNAL CANCEL $36 ", 42^{\prime \prime}, 48^{\prime \prime}$
SWITCH－PROGRAM SELECT 30 ＂ SWITCH－PROGRAM SELECT 36 ＂，42＂，48＂ SWITCH－START 30 ＂ SWITCH－START 36＂，42＂，48＂
SWITCH－SCROLL 30＂
SWITCH－SCROLL 36＂，42＂，48＂ SWITCH－START 36＂，42＂，48＂
SWITCH－SCROLL 30＂
SWITCH－SCROLL 36＂，42＂，48＂ SWITCH－START 36＂，42＂，48＂
SWITCH－SCROLL 30＂
SWITCH－SCROLL 36＂，42＂，48＂
 COMPONENT NUMBER MVINV－L
PXDO PXFDL
 $\stackrel{\sim}{\underset{\sim}{\sim}}$ 둔 SHD
SHD
SHDO
SHDO
SHDO SHDO
SHDO SHDO SHDO SHDR
W7F5JPL/2004134N

ONENT	A R	LIST
WHERE TO FIND		
THIS COMPONENT	MILNOR P/N	DESCRIPTION
W7F5JS+D	09N405M240	SWASS M2W 2NO
W7F5JS+E	09N405M240	SWASS M2W 2NO
W7F5JS+F	09N405M240	SWASS M2W 2NO
W7F5JIA	$09 \mathrm{RO19}$	MICRO SWITCH SPDT KEYED
W7F5JIA	09N405PB10	SWASS PBBK 1 NO
W7F5JRH	09N405S320	SWASS S3W 2no
W7F5JHD	09N405S320	SWASS S3W 2NO
W7F5JVPE	09N405S310	SWASS S3W 1NO
W7F5JIA	09N127C	KEYSW SPST 7A120VAC SCREW TERM
W7F5JIA	09N127C	KEYSW SPST 7A120VAC SCREW TERM
W7F5JS+A	09R014A	MINI-SW SPDT STAKON \#V15G1C26K
W7F5JS+B	09R014A	MINI-SW SPDT STAKON \#V15G1C26K
W7F5JS+C	09R014A	MINI-SW SPDT STAKON \#V15G1C26K
W7F5JS+D	09R014A	MINI-SW SPDT STAKON \#V15G1C26K
W7F5JS+C	09 RO 12	MICSW SPDT PAINTED BZE6-RN 01
W7F5JS+D	$09 R 012$	MINI-SW SPDT STAKON \#V15G1C26K
W7F5JS+E	09RM01212S	CAPSW 12' 180DEG ROLLER SILVER
W7F5JS+F	09RM01212S	CAPSW 12' 180DEG ROLLER SILVER
W7F5JIA	09 RO 21	MICRO SWITCH SPDT SENSING
W7F5JIA	09N082B05	PRESSW NASON CLOSE @ 5 LB
W7F5JIA	09N082A	PRESSW NASON CLOSE @ 62 LB.
W7F5JS+C	09N082B10	PRESSW NASON CLOSED @ 10 LB
W7F5JS+D	09N082B10	PRESSW NASON CLOSED @ 10 LB
W7F5JS+E	09N082B10	PRESSW NASON CLOSED @ 10 LB
W7F5JS+F	09N082B10	PRESSW NASON CLOSED @ 10 LB
W7F5JIA	09N070	PRESS SW 7"WC INVENSYS 38-717
W7F5JIA	09N069	PRESS SW 4"WC Invensys $738-719$
W7F5JDR	96R301A71	1/8" AIR PILOT 3W NC 240V50/60
W7F5JS+E	$96 T B C 2 B A 71$	1/4" N/C 2WAY 220V50/60C VALVE

COMPONENT

$$
\begin{aligned}
& \text { FUNCTION OF THIS } \\
& \text { COMPONENT NUMBER } \\
& \hline \text { SWITCH-MASTER } \\
& \text { SWITCH-MASTER } \\
& \text { SWITCH-MASTER } \\
& \text { SWITCH-TERMINATE 30" } \\
& \text { SWITCH-TERMINATE 36",42",48" } \\
& \text { SWITCH-UP/DOWN } \\
& \text { SWITCH-HYDRAULIC DOOR OPEN/CLOSED } \\
& \text { sWITCH-JOG } \\
& \text { >>SWITCH-KEYLOCK } \\
& \text { SWITCH-AUTO/MANUAL } \\
& \text { SWITCH-RUN/PROGRAM } \\
& \text { >>SWITCH-MECHANICAL OPERATED } \\
& \text { SWITCH-DOOR CLOSED \#2 } \\
& \text { SWITCH-EXCURSION } \\
& \text { >>SWITCH-PRESSURE OPERATED } \\
& \text { PRESSURE SW-BEARING SEAL } \\
& \text { PRESSURE SW-BRAKE } \\
& \text { PRESSURE SW-DOOR SEAL } \\
& \text { PRESSURE SW-HIGH WATER LEVEL } \\
& \text { PRESSURE SW-LOW WATER LEVEL } \\
& \text { P>VALVE-ELLCCTRIC OPERATED } \\
& \text { VALVE-ALTERNATE DRAIN } \\
& \text { VALVE-BEARING PRESSURE }
\end{aligned}
$$

COMPONENT

W7F5JPL/2004134N
LOCATION
REAR OF MACH
VALVE BOX

PELLERIN MILNOR CORPORATION LIMITED STANDARD WARRANTY

We warrant to the original purchaser that MILNOR machines including electronic hardware/software (hereafter referred to as "equipment"), will be free from defects in material and workmanship for a period of one year from the date of shipment from our factory with no operating hour limitation. This warranty is contingent upon the equipment being installed, operated and serviced as specified in the operating manual supplied with the equipment, and operated under normal conditions by competent operators.

Providing we receive written notification of a warranted defect within 30 days of its discovery, we will - at our option - repair or replace the defective part or parts, FOB our factory. We retain the right to require inspection of the parts claimed defective in our factory prior to repairing or replacing same. We will not be responsible, or in any way liable, for unauthorized repairs or service to our equipment, and this warranty shall be void if the equipment is repaired or altered in any way without MILNOR's written consent.

Parts which require routine replacement due to normal wear - such as gaskets, contact points, brake and clutch linings and similar parts - are not covered by this warranty, nor are parts damaged by exposure to weather or to chemicals.

We reserve the right to make changes in the design and/or construction of our equipment (including purchased components) without obligation to change any equipment previously supplied.

ANY SALE OR FURNISHING OF ANY EQUIPMENT BY MILNOR IS MADE ONLY UPON THE EXPRESS UNDERSTANDING THAT MILNOR MAKES NO EXPRESSED OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR USE OR PURPOSE. MILNOR WILL NOT BE RESPONSIBLE FOR ANY COSTS OR DAMAGES ACTUALLY INCURRED OR REQUIRED AS A RESULT OF: THE FAILURE OF ANY OTHER PERSON OR ENTITY TO PERFORM ITS RESPONSIBILITIES, FIRE OR OTHER HAZARD, ACCIDENT, IMPROPER STORAGE, MISUSE, NEGLECT, POWER OR ENVIRONMENTAL CONTROL MALFUNCTIONS, DAMAGE FROM LIQUIDS, OR ANY OTHER CAUSE BEYOND THE NORMAL RANGE OF USE. REGARDLESS OF HOW CAUSED, IN NO EVENT SHALL MILNOR BE LIABLE FOR SPECIAL, INDIRECT, PUNITIVE, LIQUIDATED, OR CONSEQUENTIAL COSTS OR DAMAGES, OR ANY COSTS OR DAMAGES WHATSOEVER WHICH EXCEED THE PRICE PAID TO MILNOR FOR THE EQUIPMENT IT SELLS OR FURNISHES.

WE NEITHER ASSUME, NOR AUTHORIZE ANY EMPLOYEE OR OTHER PERSON TO ASSUME FOR US, ANY OTHER RESPONSIBILITY AND/OR LIABILITY IN CONNECTION WITH THE SALE OR FURNISHING OF OUR EQUIPMENT TO ANY BUYER.

How to order repair parts

Repair parts may be ordered either from the authorized dealer who sold you this machine, or directly from the MILNOR factory. In most cases, your dealer will have these parts in stock.

When ordering parts, please be sure to give us the following information:

1. Model and serial number of the machine for which the parts are required
2. Part number
3. Name of the part
4. Quantity needed
5. Method of shipment desired
6. In correspondence regarding motors or electrical controls, please include all nameplate data, including wiring diagram number and the make or manufacturer of the motor or controls.

All parts will be shipped C.O.D. transportation charges collect only.

Please read this manual

It is strongly recommended that you read the installation and operating manual before attempting to install or operate your machine. We suggest that this manual be kept in your business office so that it will not become lost.

PELLERIN MILNOR CORPORATION

P.O. BOX 400, KENNER, LA., 70063-0400, U.S.A. FAX: Administration 504/468-9307, Engineering 504/469-1849, Service 504/469-9777

HOW TO USE MILNOR ${ }^{\circledR}$ ELECTRICAL SCHEMATICS

Milnor ${ }^{\circledR}$ electrical schematic manuals contain a table of contents/component list, a set of schematic drawings, and a signal routing table. These documents are cross referenced and must be used together.

The table of contents/components list shows, for every component on every schematic in the manual, the component item number(explained in detail below), statement of function, parent schematic number, part number, description and electric box location.

The schematic drawings use symbols for each electro-mechanical component, and indicate the function of each. Integrated circuits are not shown, but the function of each microprocessor input and output is stated. Certain electrical components not pertinent to circuit logic, such as wire connectors, are not represented on the schematic but are shown in the signal routing table. Most machines (manuals) require several schematics to describe the complete control system including all available options. However, this means that there are usually some schematics that do not apply to a specific machine. Each schematic is devoted to circuits with common functions (e.g., microprocessor inputs, motor contactors). Schematics appear in the manual in alphanumeric order.

The signal routing table assists in determining wire routing. It identifies each group of conductors in a control system connected with zero resistance. Groups are identified by a two or three character wire number. Each wire belonging to such a group of conductors has that group's wire number printed along the wire insulation. Although there are some exceptions, generally each group of conductors within the entire electrical system for a machine family has its own unique wire number. The signal routing table for the manual lists each wire alphanumerically by wire number and each component/pin number to which the wire is attached, including those not shown on the schematics (e.g., wire connectors). Milnor ${ }^{\circledR}$ document MSTS0202BE "HOW TO USE THE SIGNAL ROUTING TABLE" provides more information.

Component Prefix Classifications and Descriptions

The component item numbers consist of up to six characters and appear as part of a component's symbol on the schematic. The first two characters indicate the general class of component and the remaining characters are a mnemonic for the function. For example, "CD" is the code for all time delay relays and "SR" stands for safety reset. Thus, CDSR is a time delay relay that serves as a safety reset.

The following are descriptions of the electrical components used in Milnor ${ }^{\circledR}$ machines. Descriptions are in alphabetical order of the component class code (two character prefix).

BA=Printed Circuit Board Insulating substrate on which a thin pattern of copper conductors has been formed to connect discreet electronic components also mounted on the board.

CB=Circuit Breaker Automatic switch that opens an electric circuit in abnormal current conditions (e.g., an overload).

CD=Control, Time Delay Relay A relay whose contacts switch only after a fixed or adjustable delay, once voltage has been applied to its coil. The contacts switch back to normal (de-energized state) immediately when the voltage is removed.

CL=Control, Latch Relay A relay which latches in an energized or set position when operated by one coil (the latch/set coil). The relay stays latched, even though coil voltage is removed. The relay releases or unlatches when voltage is applied to a second coil, (the unlatch/reset coi).

CR=Control, Relay A relay whose contacts switch immediately when voltage is applied to its coil and revert to normal when the voltage is removed.

Example of One Assembly

CP=Control, Photo-Eyes Photo-eyes sense the presence of an object without direct physical contact. Photo-eyes consist of a transmitter, receiver, and output module. These components may be housed in one assembly with the transmitter bouncing light off of a reflector to the receiver, or these components can be housed in two separate assemblies with the transmitter pointed directly at the receiver.

The photo-eye can be set to turn on its output either when the light beam becomes blocked (dark operate) or when it becomes unblocked (light operate).

CS=Control, Contactor/Motor Starter A relay capable of handling heavier electrical loads, usually a motor.
$E B=E l e c t r i c$ Buzzer An audible signaling device.
EC=Electric Clutch A clutch consists of a coil and a rotor. The rotor has two separate rotating plates. These plates are free to rotate independent of each other until the coil is energized. Once energized the two plates turn as one.

ED=Electronic Display A visual presentation of data, such as an LCD (liquid crystal display), LED (light emitting diode) display, or VFD (vacuum florescent display).

EF=Electric Fuse A fuse is an over-current safety device with a circuit opening fusible member which is heated and severed by the passage of over-current through it.

EL=Electric Light Indicator lights may be either incandescent or fluorescent.
EM=Electro Magnet Solenoid A device consisting of a core surrounded by a wire coil through which an electric current is passed. While current is flowing, iron is attracted to the core (e.g., a pinch tube drain valve solenoid).

ES=Electronic Power Supply A device that converts AC (altemating current) to filtered and regulated DC (direct current). The input voltage to the power supply is usually 120 or 240 VAC . The output is $+5,+12$, and -12 VDC .

ET=Thermal Overload A safety device designed to protect a motor. A thermal overload consists of an overload block, heaters, and an auxiliary contact. The auxiliary contact is normally installed in a safety (three-wire) circuit that stops power to the motor contactor coil when a motor overload occurs.

EX=Electrical Transformer A device that transfers electrical energy from one isolated circuit to another, often raising or lowering the voltage in the process.

$K B=K e y b o a r d$ Device similar to a typewriter for making entries to a computer.
MN=Electronic Monitor (CRT) A cathode ray tube used for visual presentation of data.

MR=Motors Electro-mechanical device that converts electrical energy into mechanical energy.

MV=Motor (Variable Speed) Inverter To vary the speed of an AC motor, the volts to frequency ratio must be kept constant. The motor will overheat if this ratio is not maintained.

The motor variable speed inverter converts three phase AC to DC. The inverter then uses this DC voltage to generate AC at the proper voltage and frequency for the commanded speed.

NOTE: Switch symbols used in the schematics and described below always depict the switch in its unactuated state.

PX=Proximity Switch A device which reacts to the proximity of an target without physical contact or connection. The actuator or target causes a change in the inductance of the proximity switch which causes the switch to operate. Proximity switches can be two-wire (AC) or three-wire (DC) devices.

SC=Switch, Cam Operated A switch in which the electrical contacts are opened and/or closed by the mechanical action of a cam(s). Applications include $35-50$ pound timer operated machines, autospot, timer reversing motor assembly, and some balancing systems.

SH=Switch, Hand Operated A switch that is manually operated (e.g., Start button, Master switch, etc.).

SK=Switch, Key Lock A switch that requires a key to operate. This prevents unauthorized personnel from gaining access to certain functions (e.g., the Program Menu).

SL=Switch, Level Operated A switch connected to a float that causes the switch to open

SM=Switch, Mechanically Operated A switch that is mechanically operated by a part of or the motion of the machine (e.g., door closed switch, tilt limit switches, etc.)

SP=Switch, Pressure Operated A switch consisting of a diaphragm that pushes against a switch actuator.

ST=Switch, Temperature Operated A switch that is actuated at a preset temperature (e.g., dryer safety probes) or has adjustable set points (e.g., Motometers or Combistats).

TB=Terminal Board A strip or block for attaching or terminating wires.

VE=Valve, Electric Operated A valve operated by an electric coil to control the flow of fluid. The fluid can be air, water or hydraulics.

ZF=Rectifier A solid state device that converts alternating current to direct current.

WC=Wiring Connector A coupling device for joining two cables or connecting a cable to an electronic circuit or piece of equipment. Connectors are male or female, according to whether they plug into or receive the mating connector.

Component Terminal Numbering

NOTE: Numbers shown usually appear on the component.

Features of Milnor ${ }^{\circledR}$ Electrical Schematics

Document W6DRYGS+A shown on the next page, is part of an actual schematic for the Milnor ${ }^{æ}$ Gas Dryer. For the purposes of this instruction, the schematic is shown gray and explanations of the items on the schematic are shown black.

The item numbers below correspond to the circled item numbers shown on the drawing.
(1) The first six characters of the drawing number (W6DRYG) indicate that this is a wiring diagram (W), identify the generation of controls (6), and identify the type of machine (DRYG=Gas Dryer). These characters appear in the drawing number of every schematic in the set.

The characters following the first six are unique to each drawing. The two characters identified as the page number are an abbreviation for the function performed by the depicted circuitry ($\mathrm{S}+=$ three-wire circuit) and establish the order in which the schematic occurs in the manual (schematics are arranged in alpha-numeric order in the manual).

Whenever circuitry changes are significant enough to warrant publishing a new schematic drawing, the new drawing number will be the same as the old except for the major revision letter (A in the example).
(2) Included in the drawing title are the class of control system, the title of this circuit, and the circuit voltage.

Line numbers are provided along the bottom edge of the drawing. These permit service personnel in the field and at the Milnor ${ }^{x}$ factory to quickly relate circuit locations when discussing troubleshooting over the phone. Page and line numbers are referenced on the drawing as explained in items five and six below.
(4) General functions of the circuit or portions thereof are stated across the top edge of the drawing.
(5) Relay contacts show the page and line number on which the relay coil may be found. This is the type of cross referencing most frequently used in troubleshooting.
(6) Relay coils show the page and line number on which its associated contacts are located.
(7) Relay contacts and relay coils show the physical location of the relay if mounted on a tray..
(8) The designation MTA applies to electronic circuit board connections. Typically, a control system will contain several different types of circuit boards and one or more boards of each type. A numerical suffix identifies the board type and a numerical prefix identifies which one of several boards of a given type is being depicted. For example, the designation 1MTA5 identifies this as the first I/O board (8 output, 16 input board) in the control system. As shown on the drawing, a pin number follows the board number, separated by a dash. Thus, 1MTA5-9 is pin 9 on this board. The numerical designations for board types vary from one control system to another. Some of the board types commonly encountered on the Mark II washer-extractor control and their designations are as follows:

MTA1-MTA6 $=8$ output, 16 input ($8 / 16$) boards.
MTA11-MTA16 $=16$ output boards

MTA30-MTA40 = processor boards
MTA41-MTA43 $=$ digital to analog $(\mathrm{D} / \mathrm{A})$ boards

MTA51-MTA56 = analog to digital (A/D) boards
The complete listing of the boards utilized in a given control system can be found in the component list for that system.
(9) The wire numbers, as described in the explanation of the signal routing table at the beginning of this section, are shown at appropriate locations on the schematic drawing.
(10) Where diamond symbols appear at the end of a conductor, these are match points for continuing the schematic on another drawing. The page and line number that continues the circuit is printed adjacent to the diamond symbol. Where more than one match point appears on the referenced page, match diamonds containing corresponding letters.

FIGURE	$\begin{gathered} \text { ELECTRICAL } \\ \text { VALUES } \end{gathered}$	SUFFIXES									
		8		H		M		T		U	
		50HZ	80Hz								
\wedge	1.000	208	230			200	220	220	240	$200 \cdot 220$	208-240
B	$\sqrt{3}$				208	348	380	380		346-380	380
C	2.000	418	480	220	240	400	440	440	480	400.440	440-480
D	$1 \cdot \sqrt{3}$						600				600
E	$2 \sqrt{3}$			300							

THIS WINDING CAN ONLY BE USED ON INTERMITTENT DUTY MOTORS OR HARD CONSULT FACTORY BEFORE USING THIS WINDING.		

10
 BMP850029
 motor Connection Diagrams

THREE PHASE SINGLE SPEED MOTORS WITH MULTIPLE VOLTAGE RATINGS (ONLY FOR MOTOR SUFFIXES LISTED)

PELLERIN MILNOR CORPORATION

응

AIR VALVE BOX
48040 F7J/B, 48040F7W/N
PELLERIN MILNOR CORPORATION

NOTES:

1. VEC1, VEC2, AND VEC3 ARE PROVIDED AS PART OF THE OPTIONAL DRY CHEMICAL
2. MTA23 AND MTA 24 ARE LOCATED ON THE OUTPUT BOARD. ARE LOCATED ON BOARD.

W7F5JCF
2001365B

$$
\equiv \text { 酋 }
$$

$\frac{\text { W7F5JRH }}{2002243}$

11

$$
\begin{array}{l|l|l}
\bar{Z} & \frac{101}{S+B 05} & \overline{S+E 05} \\
\frac{S+E}{} & \frac{-}{-}
\end{array}
$$

$$
\begin{aligned}
\bar{Z} \mid & \frac{\mathrm{S}+\mathrm{C} 15}{} \\
= & \\
& =\left\lvert\, \frac{1 \mathrm{AO} 4}{\mathrm{E}+\mathrm{CO} 5}\right.
\end{aligned}
$$

57

$$
\begin{array}{r|l}
\overline{=} & \left\lvert\, \frac{S+F_{16}}{S+F 17}\right. \\
= & \\
\overline{=} & \frac{1 A 04}{S+F 05}
\end{array}
$$

${ }^{2757555} 2$

00
01
02
03
04
05

LITHO IN U.S.A.

02
03
04
05
06

FOR 7.5 HP INVERTER

LITHO IN U.S.A.

LITHO IN U.S.A.

FOR 7.5 HP MOTOR (36030F8J)

